Some insight into one of the activities of EverLoNG WP3: optimisation of integration of the ship-based carbon capture system with the engine.


By Joan van den Akker, Naval Architect, Conoship

One of the important aspects about ship-based carbon capture (SBCC) is the heat required for the reboiler process of the capture system. In EverLoNG, this heat is supplied to the capture system by recovering waste heat from the exhaust gas. Depending on the engine type, this can pose some challenges with the heat integration between the engine and the capture system. In this ship’s log, we’ll show one approach to optimising the heat integration in order to maximise the CO2 capture rate.

Because of the temperature at which the reboiler operates, efficient heat supply to the reboiler from exhaust gas waste heat can only be achieved by exhaust gases with temperatures in excess of about 140°C.

Typically, four-stroke dual fuel engines running on gas have quite high exhaust gas temperatures (in the order of 350° to 450°C, and the recoverable exhaust gas heat enables CO2 capture rates of 90%.

For two-stroke engines, however, the situation is different. The exhaust gas temperatures of large two-stroke engines are typically in the order of 200°C, which is much closer to the minimum 140°C that we need for the reboiler. So recovering sufficient heat from the exhaust gases is not trivial here and requires optimisation.

An example: let’s consider a two-stroke engine with an exhaust gas temperature of 208°C, an exhaust gas flow of 8.1 kg/kWh and a specific fuel consumption of 134 g/kWh. The exhaust gas heat that can be used for the reboiler is then around 580 kJ per kWh of energy produced by the engine. This is enough heat for the CO2 capture system to capture 45% of the engine’s CO2 emissions at best.

To increase the capture rate, one solution could be to install an extra (gas or oil-fired) boiler to supply the required heat for the CO2 capture process. This will, however, cause a significant increase in fuel consumption of the ship, so a different approach is taken.

To increase the recoverable heat from the exhaust gas, the configuration of the same two-stroke engine can be modified to achieve higher exhaust gas temperatures, at the cost of a small efficiency loss. This is not a rare solution. It is also done for engines that have a SCR (NOx reduction) system fitted in the exhaust line, due to the high temperatures required by the SCR catalyst. 

So now we consider the same two-stroke engine as before, but configured for a higher exhaust gas temperature of 250°C. The corresponding exhaust gas flow and specific fuel consumption are 7.5 kg/kWh and 135 g/kWh, respectively. Because of the higher temperature, more heat can be recovered from the exhaust gas, enabling a capture rate of 67%.

So through a relatively small modification to the engine configuration, the capture rate is increased from 45% to 67%, at the expense of a relatively small (less than 1.5%) increase in fuel consumption of the engine: not a bad score.

Back to Ship's Log

Sign up to our Mailing List

We use Mailchimp as our marketing platform. By clicking the subscribe button, you acknowledge that your information will be gathered in line with our Privacy Policy, and transferred to Mailchimp for processing.

flags mini